Sonntag, 17. Dezember 2017
Benutzername
Passwort
Registrieren
Passwort vergessen?

Home
e-journal
Der Aktuelle Fall
CME online
News
Gesundheitspolitik
Fachgesellschaften
Therapiealgorithmen
Videos
Veranstaltungen
Broschüren
Zentren


Suche
Archiv
Buchbestellung
Newsletter
Probe-Abo
Impressum


journalmed.de


Anzeige:
 
 
Anzeige:
 
 

JOURNAL ONKOLOGIE – NEWS
Zurück
Zurück
E-Mail
Email
Drucken
Drucken
Zum Bewerten bitte anmelden!
12. April 2017 Seite 1/2

Bioinformatik: Krebstherapien besser planen

Die Behandlung von Lungenkrebspatienten schneller, exakter und effizienter planen: Darauf zielt ein neuer Ansatz ab, der am Lehrstuhl für Bioinformatik der Uni Würzburg entwickelt wird. "Das nicht-kleinzellige Lungenkarzinom existiert in verschiedenen Unterarten“, erläutert der Würzburger Bioinformatiker Meik Kunz. In seiner Doktorarbeit hat er sich mit der Frage beschäftigt, inwieweit es mit Hilfe des Computers möglich ist, Lungenkrebspatienten besser zu behandeln.
Auf der Basis von Labordaten gelang es dem jungen Wissenschaftler, das Verhalten von Lungentumoren am Computer abzubilden. Was eine äußerst komplizierte Angelegenheit ist: Hunderte biologische Moleküle haben Einfluss darauf, wie sich ein Tumor verhält, und an jeder Stelle ihrer Aktivität kann es theoretisch zu Fehlregulierungen kommen – mit dem Ergebnis, dass dauerhaft ein falsches Signal weitergeleitet wird und zu einem unkontrollierten Zellwachstum führt.

Mit Hilfe des Computers lässt sich laut Kunz herausfinden, an welcher Stelle in einem komplexen Tumor Fehlinformationen weitergeleitet werden. Das wiederum sei die Voraussetzung dafür, eine passende Therapie zu finden, die das weitere Wachsen des Tumors stoppt.

Daten aus der Krebsforschung als Basis

Für seine Modellierungen fütterte Kunz den Computer mit vielen tausend Daten aus der Krebsforschung. Besonders wichtig für seine bioinformatische Signalweg-Analyse waren Daten aus Experimenten mit einem Tumormodell, das am Lehrstuhl für Tissue Engineering des Würzburger Universitätsklinikums entwickelt wurde. Kunz erfuhr dadurch, welche Gene bei den drei Tumorarten nicht richtig reguliert waren. Am Computer konnte er die konkrete Signalwirkung abbilden und zeigen, „wie die einzelnen Komponenten zusammenhängen.“

Das zu wissen ist wichtig, um am Rechner Erkenntnisse darüber zu gewinnen, wie eine medikamentöse Behandlung im konkreten Fall ansprechen wird. Aus seinen Computermodellen erkannte Meik Kunz, welcher „Patient“ von welchem Therapieansatz profitieren und wo es zu Resistenzen gegen die Behandlung kommen würde. Weiter war es ihm möglich, exakt darzustellen, wie die Therapie nach Beginn der Medikamentengabe verläuft.
 
Vorherige Seite
1 2
 
Zurück
Zurück
E-Mail
Email
Drucken
Drucken
Zum Bewerten bitte anmelden!



Anzeige:
 
 
Anzeige:
 
 
 
 
Themen
NET
CUP
CML
Nutzen Sie auch die Inhalte von journalmed.de, um sich zu Informieren.
Mediadaten
Hilfe
Copyright © 2014 rs media GmbH. All rights reserved.
Kontakt
Datenschutz
AGB
Fakten über Krebs
 
ASH 2017