Freitag, 22. Januar 2021
Navigation öffnen
Anzeige:
Xospata
 
Medizin

25. Mai 2017 Defekte Zellverbindungen verursachen Hydrocephalus bei Mäusen

Ein defektes Gen führt zu Veränderungen in der Zellschicht zwischen Hirnflüssigkeit und dem eigentlichen Hirnnervengewebe und verursacht so einen Flüssigkeitsstau im Gehirn. Mit diesem Zusammenhang haben Wissenschaftler des Deutschen Krebsforschungszentrums in Heidelberg nun erstmals einen Mechanismus für genetisch bedingten Hydrocephalus entdeckt.
Anzeige:
Pfizer Daurismo AB0825288
Pfizer Daurismo AB0825288
Etwa eines von 2.000 Neugeborenen hat einen Hydrocephalus. Dabei kann die Hirnflüssigkeit nicht in Richtung Rückenmark abfließen und staut sich stattdessen in den Flüssigkeitsräumen des Gehirns. Dadurch schwillt der Kopf ballonartig an und Hirngewebe wird verdrängt. Es drohen verschiedene neurologische Folgen wie Kopfschmerzen, Erbrechen, Seh- und Bewegungsstörungen, Krampfanfälle oder geistige Behinderungen. Die möglichen Ursachen für die Entstehung eines Hydrocephalus sind vielseitig. In einigen Fällen ist die Störung genetisch bedingt.

Das Team um Andreas Fischer, Deutsches Krebsforschungszentrum Heidelberg, entdeckte bereits 2013, dass ein Defekt in einem Gen namens Mpdz bei Mäusen einen Wasserkopf verursacht. Im selben Jahr machten Wissenschaftler aus Saudi Arabien das menschliche Pendant dazu als eine genetische Ursache für Hydrocephalus beim Menschen aus.

Nun ist es Fischer und seinem Team gelungen, den Mechanismus hinter diesem Gendefekt aufzudecken. Die Wissenschaftler haben beobachtet, dass bei neugeborenen Mäusen mit defektem Mpdz-Gen das Ependym, die trennende Zellschicht zwischen Hirnnervengewebe und Hirnflüssigkeit, stark geschädigt ist. Um diese lebensnotwendige Grenze aufrecht zu erhalten, wandern andere Zellen, so genannte Astroglia, ein. Sie sorgen für Stabilität der trennenden Gewebeschicht – jedoch zu einem hohen Preis: Das Ependym vernarbt, wodurch sich das so genannte Aquädukt, die enge Verbindung zwischen zwei Hirnventrikeln, verschließt und die Hirnflüssigkeit nicht mehr abfließen kann.
 
Rasterelektronenmikroskopische Aufnahme der geschädigten Ependymschicht innerhalb eines Hirnventrikels nach Verlust des Mpdz-Gens. © Anja Feldner, Manfred Ruppel, DKFZ
Rasterelektronenmikroskopische Aufnahme der geschädigten Ependymschicht innerhalb eines Hirnventrikels nach Verlust des Mpdz-Gens. © Anja Feldner, Manfred Ruppel, DKFZ


„Es spricht vieles dafür, dass ein Verlust des Mpdz-Gens die Stabilität der dichten Verbindungen, den so genannten Tight Junctions, zwischen benachbarten Zellen des Ependyms vermindert“, erklärt Anja Feldner, Erstautorin der Studie. Das Genprodukt von Mpdz kontrolliert Moleküle, die eine entscheidende Rolle für die Stabilität der Tight Junctions spielen. Tatsächlich zeigte sich bei Experimenten in der Kulturschale, dass diese Verbindungen zwischen Ependymzellen mit defektem Mpdz geschwächt sind. „Damit haben wir einen entscheidenden Mechanismus aufgeklärt, wie ein genetisch bedingter Hydrocephalus entsteht“, erläutert Andreas Fischer.

Quelle: Deutsches Krebsforschungszentrum

Literatur:

Anja Feldner, M. Gordian Adam, Fabian Tetzlaff et al.
Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice.
EMBO Molecular Medicine 2017. DOI: 10.15252/emmm.201606430
https://www.ncbi.nlm.nih.gov/pubmed/28500065
 


Sie können folgenden Inhalt einem Kollegen empfehlen:

"Defekte Zellverbindungen verursachen Hydrocephalus bei Mäusen"

Bitte tragen Sie auch die Absenderdaten vollständig ein, damit Sie der Empfänger erkennen kann.

Die mit (*) gekennzeichneten Angaben müssen eingetragen werden!

Die Verwendung Ihrer Daten für den Newsletter können Sie jederzeit mit Wirkung für die Zukunft gegenüber der Medical Tribune Verlagsgesellschaft mbH - Geschäftsbereich rs media widersprechen ohne dass Kosten entstehen. Nutzen Sie hierfür etwaige Abmeldelinks im Newsletter oder schreiben Sie eine E-Mail an: info[at]rsmedia-verlag.de.


ASH 2020
  • Phase-III-Studie ASCEMBL bei resistenten/intoleranten Patienten mit CML: STAMP-Inhibitor Asciminib deutlich effektiver als TKI Bosutinib
  • Ruxolitinib-resistente/-intolerante MF-Patienten profitieren im klinischen Alltag möglicherweise von einer Rechallenge
  • Real-world-Daten zu PV: Rechtzeitige Umstellung von HU auf Ruxolitinib wirkt möglicherweise Anstieg thromboembolischer Ereignisse entgegen
  • 5-Jahres-Daten der RESPONSE-2-Studie: Überlegenheit von Ruxolitinib gegenüber BAT im Langzeitverlauf bestätigt
  • Phase-I-Studie: Anhaltendes molekulares Ansprechen mit neuem BCR-ABL-Inhibitor Asciminib bei CML-Patienten mit T315I-Resistenzmutation
  • Patienten mit ITP sind emotional erheblich belastet
  • r/r DLBCL: Vielversprechende erste Daten zur CAR-T-Zell-Therapie mit Tisagenlecleucel in Kombination mit Ibrutinib
  • r/r FL: CAR-T-Zell-Therapie mit Tisagenlecleucel wirksam und sicher
  • Myelofibrose: Ruxolitinib-Startdosis von 10 mg 2x tägl. auch bei initial niedriger Thrombozytenzahl sicher anwendbar
  • Phase-III-Studie REACH3: Ruxolitinib bei chronischer steroidrefraktärer oder steroidabhängiger GvHD wirksamer als die beste verfügbare Therapie