Mittwoch, 17. Juli 2019
Navigation öffnen
Anzeige:

Medizin

02. August 2018
Seite 1/2
Wie resistente Krebszellen bekämpft werden können

Ein internationales Forschungsteam unter der Co-Leitung der Universität Bern und des Niederländischen Krebsforschungszentrums (NKI) hat verschiedene Mechanismen der Krebstherapieresistenz entschlüsselt. Die Erkenntnisse tragen dazu bei, die Selbst-Reparatur von Krebszellen nach einer Therapie zu verstehen und somit resistente Tumore effizienter zu bekämpfen.
Die DNA in unseren Zellen ist ständig Schädigungen ausgesetzt, welche insbesondere durch den normalen Stoffwechsel der Zellen verursacht werden. Aktuelle Schätzungen gehen von bis zu 70.000 Schädigungen pro Zelle pro Tag aus. Diese Schäden können gesunde Zellen aber reparieren, zum Beispiel mit Hilfe der Proteine BRCA1 und BRCA2. Wenn diese allerdings defekt sind, kommt es zu einer vermehrten Anzahl von DNA-Mutationen, die Krebs verursachen können. Vor allem die Entstehung von Brust- und Eierstockkrebs wird mit Schäden an diesen beiden Reparatur-Proteinen in Verbindung gebracht.

Tumore, die einen solchen Defekt aufweisen, können mit Hilfe einer neuen Therapie mit sogenannten PARP-Inhibitoren bekämpft werden. Wenn das Protein PARP, das ebenfalls an der DNA-Reparatur beteiligt ist, zusätzlich zu den defekten Reparatur-Proteinen blockiert wird, sterben die Krebszellen ab, während die gesunden Körperzellen (mit noch funktionierenden Reparatur-Proteinen) überleben. Trotz des klinischen Erfolgs der PARP-Inhibitoren kommt es bei Patientinnen und Patienten aber leider häufig zur Entstehung einer Resistenz. Die genauen Ursachen dieser Resistenz sind noch unklar.

In enger Zusammenarbeit mit dem Netherlands Cancer Institute (NKI) in Amsterdam (Jonkers Labor), dem Institute of Cancer Research in London (Lord Labor), dem Lunenfeld-Tanenbaum Research Institute in Toronto (Durocher Labor) und dem Genome Integrity Laboratory in Oxford (Chapman Labor) hat ein Forschungsteam der Universität Bern nun drei verschiedene Resistenzmechanismen gegen diese PARP-Inhibitoren identifiziert. Die Erkenntnisse können dazu verwendet werden, neue Ansätze gegen Therapieresistenzen zu entwickeln. Durch diese Forschung wurden auch neue Einsichten in grundsätzliche Mechanismen der DNA-Reparatur gewonnen. Die Resultate wurden in den Fachzeitschriften „Cancer Cell“, „Cell Reports“ und „Nature“ publiziert.

 
Resistente Zellen mit wiederhergestellter DNA-Reparatur. Blau: DNA in Zellkernen, Grün: PAR-Ketten (Plattform für DNA-Reparaturproteine), Rot: rekrutierte DNA-Reparaturproteine, und Mix aller 3 Farben (© Universität Bern)
Resistente Zellen mit wiederhergestellter DNA-Reparatur.
 
Vorherige Seite

Das könnte Sie auch interessieren

11. Krebsaktionstag: Austausch zu Alltagsfragen

11. Krebsaktionstag: Austausch zu Alltagsfragen
Universitätsklinikum Ulm

Senkt Sport das Rückfallrisiko bei Krebs? Welcher Badeanzug steht mir nach der Brustamputation? Wie ernähre ich mich so, dass ich fit bleibe? Um diese und weitere Fragen dreht sich der 11. Krebsaktionstag der Medizinisch-Onkologischen Tagesklinik (MOT) der Klinik für Innere Medizin III des Universitätsklinikums Ulm. Krebspatient*innen, Angehörige und Interessierte sind am Freitag, den 14.09.2018 herzlich eingeladen, sich von 10.00 bis 16.30 Uhr bei kostenfreien Vorträgen...

Sie können folgenden Inhalt einem Kollegen empfehlen:

"Wie resistente Krebszellen bekämpft werden können"

Bitte tragen Sie auch die Absenderdaten vollständig ein, damit Sie der Empfänger erkennen kann.

Die mit (*) gekennzeichneten Angaben müssen eingetragen werden!

Die Verwendung Ihrer Daten für den Newsletter können Sie jederzeit mit Wirkung für die Zukunft gegenüber der rsmedia GmbH widersprechen ohne dass Kosten entstehen. Nutzen Sie hierfür etwaige Abmeldelinks im Newsletter oder schreiben Sie eine E-Mail an: info[at]rsmedia-verlag.de.


EHA 2019
  • Subgruppenanalyse der ELIANA- und ENSIGN: Tisagenlecleucel auch bei jungen Patienten mit r/rALL und zytogenetischen Hochrisiko-Anomalien sicher und effektiv
  • Polycythaemia vera: Molekulares Ansprechen korreliert mit vermindertem Thrombose-Risiko und einer Reduktion von Thrombose- und PFS-Ereignissen
  • AML-Therapie 2019: Neue Substanzen im klinischen Einsatz, aber nach wie vor hoher Bedarf an neuen Therapieoptionen
  • Eisenüberladung bei Patienten mit Niedrigrisiko-MDS auch in Pankreas und Knochenmark nachweisbar
  • CML: Switch auf Zweitgenerations-TKIs nach unzureichendem Ansprechen auf Imatinib in der Erstlinie führt zu tieferen molekularen Remissionen
  • FLT3-mutierte AML: Midostaurin wirksam bei allen ELN-Risikoklassen und bei unterschiedlichen Gensignaturen
  • Real-world-Daten: Transfusionsabhängigkeit und Ringsideroblasten bei Niedrigrisiko-MDS assoziiert mit toxischen Eisenspezies und verkürztem Überleben
  • Erstlinientherapie der CML: Nilotinib führt auch im klinischen Alltag zu tieferen molekularen Remissionen als Imatinib
  • Weltweite Umfrage bei Ärzten und Patienten zur ITP-Therapie unterstreicht Zufriedenheit mit Thrombopoetinrezeptor-Agonisten
  • Therapiefreie Remission nach zeitlich begrenzter Zweitlinientherapie mit Eltrombopag bei Patienten mit primärer ITP erscheint möglich