Donnerstag, 14. Dezember 2017
Benutzername
Passwort
Registrieren
Passwort vergessen?

Home
e-journal
Der Aktuelle Fall
CME online
News
Gesundheitspolitik
Fachgesellschaften
Therapiealgorithmen
Videos
Veranstaltungen
Broschüren
Zentren


Suche
Archiv
Buchbestellung
Newsletter
Probe-Abo
Impressum


journalmed.de


Anzeige:
 
 
Anzeige:
 
 

JOURNAL ONKOLOGIE – NEWS
Zurück
Zurück
E-Mail
Email
Drucken
Drucken
Zum Bewerten bitte anmelden!
22. September 2016

Neu entdeckter Schalter in der Zelle unterstützt globale Umprogrammierung der Genexpression

Acetylierung und Deacetylierung von Proteinen ist ein bekannter Regulationsmechanismus, dessen Funktion bisher vor allem als epigenetischer Faktor in der Transkriptionskontrolle erforscht wurde. Biochemikern aus Mannheim gelang es zu zeigen, dass Deacetylase-Inhibitoren (sogenannte HDAC-Inhibitoren) zu einem massiven Abbau von mRNA führen, indem Poly-A Schwänze global von RNA-abbauenden Enzymen angegriffen werden. Somit steht fest, dass HDAC-Inhibitoren die Genexpression stark auf der posttranskriptionellen Ebene beeinflussen, indem sie den Umsatz aller mRNAs erhöhen.

Das Forscherteam um Prof. Stoecklin entdeckte einen Schalter, über den die Zelle quasi die gesamte Boten-RNA (mRNA) innerhalb kürzester Zeit eliminieren kann. mRNAs sind die Abschriften von aktiven Genen, die als Matrize für die Proteinbiosynthese dienen.

Was könnte der Nutzen eines solchen Schalters sein? Nach Einschätzung von Prof. Stoecklin ist dieser Mechanismus für das allgemeine Verständnis von Genexpression und deren Dynamik von Bedeutung. Die Wissenschaftler vermuten, dass er der Zelle dazu dient, die gesamte Genexpression in kurzer Zeit umzustellen.

Die Regulation der Genexpression, die dafür sorgt, dass Zellen je nach ihrer Funktion die notwendigen Genprodukte herstellen, ist Gegenstand intensiver Forschung. Zum einen geht es darum zu verstehen, wie sich Zellen differenzieren und das Wunder vollbringen, einen komplexen Organismus zu bilden. Zum anderen dient das Verständnis der Genregulation auch der Aufklärung und Bekämpfung von Erkrankungen, die auf die Fehlregulation von Genen zurückzuführen sind.

Die Genexpression, also die Umsetzung von genetischer Information (Gen, DNA) in ein Genprodukt, besteht aus mehreren Schritten. Die für ein Protein kodierende DNA-Sequenz wird zunächst in mRNA transkribiert. Das RNA-Transkript wird anschließend prozessiert, indem beispielsweise an einem Ende des RNA-Strangs eine so genannte 5‘-cap-Struktur aus modifiziertem Guanosin angehängt und am anderen 3‘-Ende ein Poly-A-Schwanz aus vielen Adenosinen angefügt wird. Die mRNA kann nun als Matrize für die Synthese (Translation) eines Proteins dienen.

Traditionell wird die Genexpression vor allem auf der Ebene der Transkription intensiv erforscht. Es ist aber bekannt, dass Regulation auch auf der Ebene jenseits der Transkription über den gezielten Abbau einzelner mRNAs erfolgt, wobei hier der Poly-A Schwanz eine wichtige Rolle spielt, indem er die mRNA normalerweise vor Abbau schützt. Dass es aber einen Schalter gibt, der die Stabilität der mRNA global kontrolliert, ist neu.

Die Wissenschaftler stießen auf den Schalter, als sie entdeckten, dass ein RNA-abbauendes Enzym acetyliert wird.

Mechanismus zur Steuerung des globalen Abbaus von mRNA
 

Abb. 1: Der in der Abbildung dargestellte Mechanismus: Eine Acetyltransferase (CBP/p300) überträgt Acetylgruppen auf ein RNA-abbauendes Enzym (CAF1), das als katalytische Untereinheit eines Deadenylase-Komplexes (CCR4-CAF1-NOT) diesen entsprechend aktiviert. Dies führt zum Abbau von Poly-A Schwänzen und reduziert in der Folge die Stabilität von tausenden mRNAs dramatisch. Umgekehrt erhöhen Deacetylasen (HDAC1/2) die globale mRNA-Stabilität. (©Universitätsmedizin Mannheim)
Abb. 1:  Der in der Abbildung dargestellte Mechanismus: Eine Acetyltransferase (CBP/p300) überträgt Acetylgruppen auf ein RNA-abbauendes Enzym (CAF1), das als katalytische Untereinheit eines Deadenylase-Komplexes (CCR4-CAF1-NOT) diesen entsprechend aktiviert. Dies führt zum Abbau von Poly-A Schwänzen und reduziert in der Folge die Stabilität von tausenden mRNAs dramatisch. Umgekehrt erhöhen Deacetylasen (HDAC1/2) die globale mRNA-Stabilität. (©Universitätsmedizin Mannheim)


Die Entdeckung der Mannheimer Wissenschaftler zieht viele interessante Fragestellungen nach sich. Dabei geht es vor allem um die biologischen Funktionen dieses Mechanismus. Der Schalter scheint darüber zu entscheiden, ob eine Zelle sich im statischen „Normalbetrieb“ befindet, der ein konstantes Genexpressionsmuster vorsieht, oder ob sie sich im „Bereitschaftsmodus“ befindet, der es ihr ermöglicht, schnell die Expression von tausenden von Genen umprogrammieren zu können.

Der Mechanismus könnte daher eine Rolle bei der Steuerung der Differenzierung spielen. Hierbei wandeln sich Vorläuferzellen in reife Zellen um, die dann ganz bestimmte Aufgaben in einem Gewebe oder Organ übernehmen. Befindet sich die Zelle im Bereitschaftsmodus, so kann sie das Expressionsmuster ihrer Gene innerhalb kürzester Zeit effektiv umstellen, indem die bereits vorhandenen mRNA-Matrizen global abgebaut und durch neue mRNAs ersetzt werden. Eine ausdifferenzierte Zelle hingegen, die ausschließlich konstitutive Funktionen erfüllt, befindet sich eher im Normalbetrieb mit einer hohen mRNA-Stabilität.

Der Schalter könnte auch für die Krebsforschung wichtig sein. Zum einen werden bereits heute HDAC-Inhibitoren in der Krebstherapie eingesetzt, sind aber noch ungenügend verstanden. Zum anderen ist bekannt, dass die Stabilität von mRNA in vielen Tumorzellen erhöht ist. Hieraus ergibt sich die Möglichkeit, dass Tumorzellen, die sich im Normalbetrieb eingerichtet haben, durch HDAC-Inhibitoren gezielt in den Bereitschaftsmodus übergeführt werden können, in welchem sie leichter zu beeinflussen sind. Das junge Forscherteam, mit dem Prof. Stoecklin erst dieses Jahr seine Arbeit an der Medizinischen Fakultät Mannheim aufgenommen hat, wird diesen wichtigen Fragen in den nächsten Jahren intensiv nachgehen.
Universitätsmedizin Mannheim
Literatur:
Sahil Sharma, Fabian Poetz, Marius Bruer et al.
Acetylation-Dependent Control of Global Poly(A) RNA Degradation by CBP/p300 and HDAC1/2
Molecular Cell; DOI: 10.1016/j.molcel.2016.08.030
http://www.ncbi.nlm.nih.gov/pubmed/27635759
 
Zurück
Zurück
E-Mail
Email
Drucken
Drucken
Zum Bewerten bitte anmelden!



Anzeige:
 
 
Anzeige:
Zur Fachinformation
 
 
 
Themen
CML
NET
Nutzen Sie auch die Inhalte von journalmed.de, um sich zu Informieren.
Mediadaten
Hilfe
Copyright © 2014 rs media GmbH. All rights reserved.
Kontakt
Datenschutz
AGB
Fakten über Krebs
 
ASH 2017